Coexistence with MIMO and Potential in Legacy LTE Systems

Mohammad A. (Amir) Khojastepour¹, Ehsan Aryafar², Karthik Sundaresan¹, Rajesh Mahindra¹, Sampath Rangarajan¹

¹NEC Laboratories America, Princeton, NJ
²Princeton University, Princeton, NJ
Current wireless radios are half duplex
• Current wireless radios are half duplex
• Same band Full duplex is hard
 – Self interference is very high: \(\approx 75 \text{ dB for } 15 \text{ dBm Tx power}\)
 – Transmitted signal is known \(\rightarrow\) self interference cancellation
 – Self interference can be significantly reduced by adding a
cancellation circuit: e.g., a cancelling antenna
• Current wireless radios are half duplex
• Same band Full duplex is hard
 – Self interference is very high: ≈75 dB for 15 dBm Tx power
 – Self interference can be significantly cancelled by adding a cancellation circuit: e.g., a cancelling antenna

Can full duplex wireless double the capacity?
Outline

• Background

• Related works

• Design of MIDU

• Experimental Evaluation

• Real world implementation
 • Legacy-LTE Basestation
 • Half duplex clients

• Conclusion
Related Work

• Single-antenna full duplex
 – M. Knox, “Self-jamming for full duplex”

Enhanced Circulator design for full duplex wireless

Amir Khojastepour

NEC Laboratories America
Related Work

• Single-antenna full duplex
 – M. Knox, “Self-jamming for full duplex”

• Antenna Cancellation
 – A. Khandani, “Two-way (true full duplex) wireless”

• Asymmetric Antenna cancellation
 – J. Choi, et. al., “Achieving single channel full duplex”

• Analogue cancellation
 – M. Jain, et. al., “Practical full duplex”
 – M. Durate, et. al., “Full duplex with off-the-shelf radios"
Full Duplex vs. MIMO

- Hardware complexity, performance, size, cost metrics

Amir Khojastepour
NEC Laboratories America
Full Duplex vs. MIMO

- Hardware complexity, performance, size, cost metrics
- Antenna Conserved (AC): Same # antennas

Amir Khojastepour

NEC Laboratories America
Full Duplex vs. MIMO

- Hardware complexity, performance, size, cost metrics
- Antenna Conserved (AC): Same # antennas
- RF-Chain Conserved (RC): Same # chains
Full Duplex vs. MIMO

- Hardware complexity, performance, size, cost metrics
- Antenna Conserved (AC): Same # antennas
- RF-Chain Conserved (RC): Same # chains
- Significant **FD gains** in RC model
- Limited FD gains with small # antennas in AC model higher gains with more antennas

SI loss: 6 dB Ant Correlation: 0.1

![Graph showing capacity vs. number of antennas](image)

Amir Khojastepour

NEC Laboratories America
Full Duplex vs. MIMO

- Hardware complexity, performance, size, cost metrics
 - SI loss: 6 dB Ant Correlation: 0.1

- Antenna Conserved (AC): Same

Regions of pronounced full duplex gains in both RC and AC models

- Significant **FD gains** in RC model
- Limited **FD gains** with small # antennas in AC model higher gains with more antennas

Amir Khojastepour
NEC Laboratories America
MIDU: MIMO full-DUplex

- Symmetric antenna placement

![Diagram of MIDU: MIMO full-DUplex](image)

Input Signal
• Symmetric antenna placement

• 2-level of antenna cancellation
 – Tx cancellation followed by Rx cancellation
 – Proved in theory to have additive gains under imbalanced gains/phase or imprecise placement
MIDU: MImo full-DUplex

- Symmetric antenna placement

- 2-level of antenna cancellation
 - Tx cancellation followed by Rx cancellation
 - Proved in theory to have additive gains under imbalanced gains/phase or imprecise placement

- Easy scalability to MIMO
Experimental Evaluations

- WarpLab implementation
 - Narrow-band 625 KHz
 - Open space environment
 - MIDU vs. MU-MIMO

Virtex-IV Pro FPGA
Experimental Evaluations

- WarpLab implementation
 - Narrow-band 625 KHz
 - Open space environment
 - MIDU vs. MU-MIMO

- Performance metric: SNR and the corresponding Shannon capacity

Virtex-IV Pro FPGA
Experimental Evaluations

- WarpLab implementation
 - Narrow-band 625 KHz
 - Open space environment
 - MIDU + MU-MIMO

- Performance metric: SNR and the corresponding Shannon capacity

- Spectrum analyzer based measurement or the SNR reported by WARP
Experimental Evaluations

- **Feasibility**
 - Channel–distance relationship
 - Stability
 - Impact on far-field users

- **Cancellation**
 - Single-level
 - 2-level and MIMO

- **Comparison with MIMO**
 - Single link
 - Single cell

Amir Khojastepour
NEC Laboratories America
• Issue: How does symmetric antenna placement impact the far-field users?
Impact of MIDU on Far-Field Users

- Issue: How does symmetric antenna placement impact the far-field users?
Impact of MIDU on Far-Field Users

• Issue: How does symmetric antenna placement impact the far-field users?

• Achieved SNR can be up to 4 dB higher/lower
Impact of MIDU on Far-Field Users

- **Issue:** How does symmetric antenna placement impact the far-field users?
- **Achieved SNR** can be up to 4 dB higher/lower.
- In far-field antenna cancellation has very limited effect due to signal scattering (fading).
- **Similar results** hold for RX cancellation.

Amir Khojastepour

Graph showing signal strength vs. location ID with two groups: Single Antenna and TX Cancellation.
Experimental Evaluations

- **Feasibility**
 - Channel–distance relationship
 - Stability
 - Impact on far-field users

- **Cancellation**
 - Single-level
 - 2-level and MIMO

- **Comparison with MIMO**
 - Single link
 - Single cell

Amir Khojastepour
NEC Laboratories America
Cancellation

• Issue: Is 2-level cancellation additive? Is MIDU scalable?

• Connect the receiver to a spectrum analyzer
Cancellation

- Issue: Is 2-level cancellation additive? Is MIDU scalable?

- 22 – 30 dB cancellation on each level separately

- Cancellation remains relatively unchanged with Tx power
Cancellation

• Issue: Is 2-level cancellation additive? Is MIDU scalable?

• Phase shifter on each path to handle insertion loss and delay
Cancellation

- Issue: Is 2-level cancellation additive? Is MIDU scalable?

- Phase shifter on each path to handle insertion loss and delay

- RX cancellation on top of TX cancellation is additive
• Issue: Is 2-level cancellation additive? Is MIDU scalable?

• Phase shifter on each path to handle insertion loss and delay

• RX cancellation on top of TX cancellation is additive

• 4 dB decrease in cancellation for the first added pair, 5 dB with 3 total pairs

Amir Khojastepour

NEC Laboratories America
Experimental Evaluations

- **Feasibility**
 - Channel–distance relationship
 - Stability
 - Impact on far-field users

- **Cancellation**
 - Single-level
 - 2-level and MIMO

- **Comparison with MIMO**
 - Single link
 - Single cell

Amir Khojastepour NEC Laboratories America
Comparison with MIMO

• Compare MIDU to MU-MIMO
 – RF-Chain conserved model
 – Multi-user beamforming/filtering for MU-MIMO in each direction
 – UL \rightarrow DL interference in MIDU

• Metric: Shannon capacity of the measured SNR
Comparison with MIMO

- Compare MIDU to MU-MIMO
 - RF-Chain conserved model
 - Multi-user beamforming/filtering for MU-MIMO in each direction
 - UL → DL interference in MIDU

- Full duplex gains diminish as the number of streams is scaled

Graph showing capacity (bps/Hz) for different numbers of UL and DL streams (M and N) in comparison with MIMO and MIDU.
Comparison with MIMO

• Compare MIDU to MU-MIMO
 – RF-Chain conserved model
 – Multi-user beamforming/filtering for MU-MIMO in each direction
 – UL → DL interference in MIDU

• Full duplex gains diminish as the number of streams is scaled

• For maximum full duplex gains, the number of streams between UL and DL should be dis-proportionate

Amir Khojastepour

NEC Laboratories America
Comparison with MIMO

- Compare MIDU to MU-MIMO
 - RF-Chain conserved model
 - Multi-user beamforming/filtering for MU-MIMO in each direction
- Full duplex has great potential in practical single cell MU-MIMO schemes in which the number of UL streams is small

For maximum full duplex gains, the number of streams between UL and DL should be disproportionate

Amir Khojastepour
NEC Laboratories America
FD for Legacy-LTE

• Is it possible to enable FD in legacy LTE systems?
 – What changes are required?
 • Handset sides and network (base-station) side
 – New hardware?
 – New firmware?
 – Change in standard?
Challenges

• SI cancellation
 – Is analog cancellation sufficient?
 – What range/data rate could be achieved?
 – Passive cancellation or need for Active cancellation?

• Integration with legacy BS equipment
 – Can we keep the BS hardware and/or firmware unchanged?
 – Handling multiple frequency bands

• Transparency to half-duplex client
Frequency Converter Circuit

- We use the following circuit to enable FD without modifying basestation, user equipment or standards.

- A circuit has to be used in the basestation as well as a complementary circuit at the user equipment.
Full Duplex LTE Testbed

b) FD LTE base station a) LTE EPC network c) FD LTE client
SI Cancellation at BS

- SI power without any cancellation: -42dBm
- SI after antenna cancellation: -64dBm
- SI after antenna cancellation and using antenna shielding: -73dBm
Indoor SI Cancellation Evaluation

- **AO**: antenna separation only
- **AC**: antenna cancellation
- **AS**: antenna cancellation plus antenna shielding
- **AP**: antenna cancellation plus polarization
- **ASP**: antenna cancellation plus polarization plus shielding
Outdoor SI Cancellation Evaluation

- AO: antenna separation only
- AC: antenna cancellation only
- AS: antenna cancellation plus antenna shielding
- AP: antenna cancellation plus polarization
- ASP: antenna cancellation plus polarization plus shielding
Experiment Layout

1 m

BS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
• DL FD outperforms DL HD for almost all locations

• UL FD outperforms UL HD for about 60% locations with an average gain of 23%
CDF of Total FD (UL+DL) to Total HD Throughput

- In about 65% of the locations FD has gain over HD
- In about 40% of the locations the gain is between 20%-40%
In Summary

• Designed and implemented MIDU, the first MIMO full duplex wireless system

• Enabled two stages of antenna cancellation with additive gains that provided as high as 45 dB self-interference cancellation

• Built a prototype of MIDU with joint operation of 3x3 MIMO + Full Duplex in practice

• Implementation using Legacy-LTE basestation and possibility to use half-duplex clients

Amir Khojastepour

NEC Laboratories America